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1. Introduction

These notes are issued from a series of lectures given at the Seventh Annual
Spring Institute on Noncommutative Geometry and Operator algebras, 2009,
in Vanderbildt University. They present a summary of the author’s article
[8], with a few modifications. These are made in order to take into account
corrections and improvements due to A.Connes and C.Consani [1, 2]. The
notion of affine gadget over F1 introduced below (Def. 3.2) lies somewhere in
between the notion of “truc” in [8],3.1., Def.1 (see however i) in loc. cit.) and
A.Connes and C.Consani’s notion of “gadget over F1” [1]. We also added a
discussion of the article of R.Steinberg [9] on the analogy between symmetric
groups and general linear groups over finite fields.

I thank P.Cartier, A.Connes, C.Consani, J. Lopez Pena and O.Lorscheid
for helpful discussions.
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2. Preliminaries

2.1. An analogy. There is an analogy between the symmetric group Σn on
n letters and the general linear group GL(n,Fq), where q = pk for a prime p.
One of the first to write about this analogy was R.Steinberg in 1951 [9]. He
used it to get a result in representation theory.This goes as follows.

For all r ∈ N, define

[r] = qr−1 + qr−2 + · · ·+ q + 1 =
qr − 1

q − 1
and

{r} =
r∏
i=1

[i].

Let n ≥ 1 and G = GL(n,Fq). Let ν = (ν1, . . . , νn) be a partition of n, i.e.

n =
n∑
i=1

νi where 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νn.

Write every element of G as an n by n matrix of blocks of size νi × νj, 1 ≤
i, j ≤ n. Consider the (parabolic) subgroup of upper triangular such matrices

G(ν) =

g =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ⊂ G .

One checks that

#G/G(ν) =
{n}
n∏
i=1

{νi}
.

Let
C(ν) = IndGG(ν) 1 = C[G/G(ν)]

be the induced representation of the trivial representation of G(ν).

Theorem 2.1. Let ν be a partition of n and λi = νi + i− 1 for all i ≥ 1. The
virtual representation

Γ(ν) =
∑
κ

sgn(κ1, . . . , κn)C(λ1 − κ1, . . . , λn − κn)

is an irreducible representation of G (i.e. its character is the character of an
irreducible representation), when κ = (κ1, . . . , κn) runs over all n! permuta-
tions of 0, 1, . . . , n−1, with the convention that if λi−κi < 0 for some i, then
C(λ1 − κ1, . . . , λn − κn) = 0. Moreover, if Γ(µ) = Γ(ν), then µ = ν.

To prove this result we consider the symmetric group H = Σn and its
subgroup

H(ν) = Σν1 × · · · × Σνn .

Then

#H/H(ν) =
n!
n∏
i=1

νi!
.
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Set

D(ν) = IndHH(ν) 1 = C[H/H(ν)]

and consider the virtual representation

∆(ν) =
∑
κ

sgn(κ1, . . . , κn)D(λ1 − κ1, . . . , λn − κn).

Theorem 2.2 (Frobenius, 1898). ∆(ν) is an irreducible representation. More-
over, ∆(µ) = ∆(ν) implies µ = ν.

The proof of 2.1 follows from this theorem and the following lemma:

Lemma 2.3. Let x 7→ ψ(ν, x) be the character of C(ν) and x 7→ ϕ(ν, x) the
character of D(ν). Then, for all µ, ν, we have

1

#G

∑
x∈G

ψ(ν, x)ψ(µ, x) =
1

#H

∑
x∈H

ϕ(ν, x)ϕ(µ, x)

Proof. The left hand side (resp. the right hand side) of this equality is the
number of double cosets of G (resp.H) modulo G(µ) and G(ν) (resp. H(µ)
and H(ν)). We have an inclusion H ⊂ G such that H(µ) = G(µ) ∩ H, and
the Bruhat decomposition implies that the map

H(µ)\H/H(ν)→ G(µ)\G/G(ν)

is a bijection. �

Let χ(ν, x) be the character of C(ν). From the lemma and Frobenius’
theorem we deduce that

1

#G

∑
x∈G

χ(ν, x)χ(µ, x) = δµ,ν ,

and, to get 2.1, it remains to check that χ(ν, 1) > 0.

2.2. The field F1. In [10] Tits noticed that the analogy above extends to an
analogy between the group G(Fq) of points in Fq of a Chevalley group scheme
G and its Weyl group W . He had the idea that there should exist a “field of
characteristic one” F1 such that

W = G(F1) .

He showed furthermore that, when q goes to 1, the finite geometry attached
to G(Fq) becomes the finite geometry of the Coxeter group W .

Thirty five years later, Smirnov [7], and then Kapranov and Manin, wrote
about F1, viewed as the missing ground field over which number rings are
defined. Since then several people studied F1 and tried to define algebraic
geometry over it. Today, there are at least seven different definitions of such
a geometry, and a few studies comparing them.
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3. Affine varieties over F1

3.1. Schemes as functors. We shall propose a definition for varieties over
F1 based on three remarks. The first one is that schemes can be defined as
covariant functors from rings to sets (satisfying some extra properties, see [3]).

The second remark is that extension of scalars can be defined in terms of
functors. Namely, let k be a field, and let Ω be a k-algebra. If X is a variety
over k, we denote by XΩ = X ⊗k Ω (= X ×Spec(k) Spec(Ω)) its extension of
scalars from k to Ω. Let X be the functor from k-algebras to sets defined by
X and XΩ the functor from Ω-algebras to sets defined by XΩ. Let β be the
functor kAlg→ ΩAlg given by R 7→ R⊗k Ω.

Proposition 3.1.
(1) There is a natural transformation i : X → XΩ ◦ β of functors kAlg → Set.
For any k-algebra R the map X(R)→ XΩ(RΩ) is injective.

(2) For any scheme S over Ω and any natural transformation ϕ : X → S ◦ β,
there exists a unique algebraic morphism ϕΩ : XΩ → S such that ϕ = ϕΩ ◦ i.
In other words the following diagram is commutative:

XΩ ◦ β
ϕΩ // S ◦ β

X

i

OO

ϕ

66mmmmmmmmmmmmmmm

We deduce from this proposition that, if X is a variety over F1,

(1) X should determine a covariant functor X from F1-algebras to Set;
(2) X should define a variety X ⊗F1 Z over Z by some universal property

similar to the one in the proposition above (with k = F1 and Ω = Z).

3.2. A definition. A third remark is that we know what should play the
role of finite extensions of F1. According to both Kapranov-Smirnov [4] and
Kurokawa-Ochiai-Watanabe [5], the category of finite extensions of F1 is Abf ,
the category of finite abelian groups. If D ∈ Abf , we define the extension of
scalars of D from F1 to Z as the group-algebra D⊗F1 Z = Z[D]. For example,
F1n = Z/n, and

F1n ⊗F1 Z = Z[T ]/(T n − 1) .

We now make the following

Definition 3.2. An affine gadget over F1 is a triple X = (X,aX , eX) con-
sisting of

(1) a covariant functor X : Abf → Set ,
(2) a C-algebra aX , and
(3) a natural transformation eX : X ⇒ Hom(aX ,C[−]).

In other words, if D ∈ Abf and P ∈ X(D), we get a morphism of complex
algebras aX → C[D], that we write eX(P )(f) = f(P ) ∈ C[D], the evaluation
of f ∈ aX at the point P .

Example 3.3. Assume V is an affine algebraic variety over Z. Then we can
define an affine gadget X = G(V ) as follows:
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(1) X(D) = V (Z[D]),
(2) aX = Γ(VC,O), and
(3) given P ∈ V (Z[D]) ⊂ V (C[D]) and f ∈ aX , then f(P ) ∈ C[D] is the usual
evaluation of the function f at P .

Definition 3.4. A morphism of affine gadgets φ : X → Y consists of
(1) a natural transformation φ : X → Y , and
(2) a morphism of algebras φ∗ : aY → aX ,
which are compatible with evaluations, i.e. if P ∈ X(D) and f ∈ aY , then
f(φ(P )) = (φ∗(f))(P ).

Definition 3.5. An immersion is a morphism (φ, φ∗) such that both φ and
φ∗ are injective.

We can now define affine varieties over F1 as a special type of affine gadgets:

Definition 3.6. An affine variety over F1 is an affine gadget X = (X,aX , eX)
over F1 such that

(1) for any D ∈ Abf , the set X(D) is finite;
(2) there exists an affine variety XZ = X ⊗F1 Z over Z and an immersion of
affine gadgets i : X → G(XZ) [in particular, the points in the variety over F1

are points in XZ] satisfying the following universal property: for every affine
variety V over Z and every morphism of affine gadgets ϕ : X → G(V ), there
exists a unique algebraic morphism ϕZ : XZ → V such that ϕ = G(ϕZ) ◦ i, i.e.
the diagram

G(XZ)
G(ϕZ)

// G(V )

X

i

OO

ϕ

66mmmmmmmmmmmmmmm

commutes.

3.3. Examples.

Example 3.7. Any finite abelian group D defines an affine variety over F1,
denoted Spec(D): the functor Spec(D) is the functor represented by D, the

algebra is C[D], and the evaluation is the obvious one.

Example 3.8. We define the multiplicative group X = Gm/F1 as the triple
(X,aX , eX) where

(1) X(D) = D,
(2) aX is the algebra of continuous complex functions on the circle S1, and
(3) if P ∈ X(D) and f ∈ aX , for every character χ : D → C×, f(P ) ∈ C[D]
is such that χ(f(P )) = f(χ(P )).

Proposition 3.9. Gm/F1 is an affine variety over F1 such that Gm ⊗F1 Z =
Spec(Z[T, T−1]).

Example 3.10. The affine line A1/F1 is defined as the triple (X,aX , eX) by
(1) X(D) = D q {0},
(2) aX is the algebra of continuous functions on the closed unit disk which are
holomorphic in the open unit disk, and
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(3) if P ∈ X(D) and f ∈ aX , for any character χ : D → C×, we have
χ(f(P )) = f(χ(P )).

Proposition 3.11. A1/F1 is an affine variety over F1 with extension of scalars
A1 ⊗F1 Z = Spec(Z[T ]).

4. Varieties over F1

4.1. Definition. To get varieties over F1 (and not only affine ones), we pro-
ceed again by analogy with Proposition 3.1. Let AffF1 be the category of affine
varieties over F1 (a full subcategory of the category of affine gadgets).

Definition 4.1. An object over F1 is a triple X = (X,aX , eX) consisting of
(1) a contravariant functor X : AffF1 → Set ,
(2) a C-algebra aX , and
(3) a natural transformation eX : X ⇒ Hom(aX ,a−).

Example 4.2. Assume V is an algebraic variety over Z. Then we can define
an object X = Ob(V ) as follows:

(1) X(Y ) = HomZ(YZ, V ),
(2) aX = Γ(VC,O), and
(3) given u ∈ HomZ(YZ, V ) and f ∈ aX , then eX(u)(f) = i∗u∗(f) .

Morphisms and immersions of objects are defined as the corresponding
notions for affine gadgets. Finally

Definition 4.3. A variety over F1 is an object X = (X,aX , eX) over F1 such
that

(1) for any D ∈ Abf , the set X(Spec(D)) is finite;
(2) there exists a variety XZ = X ⊗F1 Z over Z and an immersion of objects
i : X → Ob(XZ) satisfying the following universal property: for every variety
V over Z and every morphism of objects ϕ : X → Ob(V ), there exists a unique
algebraic morphism ϕZ : XZ → V such that ϕ = Ob(ϕZ) ◦ i.

4.2. Examples. Any affine variety X over F1 is also a variety over F1: X is
the functor represented by X, aX and eX are the obvious ones.

The following proposition (see [8] Proposition 5) allows one to define a
variety over F1 by glueing subvarieties.

Proposition 4.4. Let V be a variety over Z and V =
⋃
i∈I
Ui a finite open cover

of V . Assume there is a finite family of varieties Xi = (X
i
,ai, ei), i ∈ I, and

Xij = (X
ij
,aij, eij), i 6= j, and immersions Xij → Xi and Xi → Ob(V ) of

varieties over F1 such that
(1) Xij = Xji and the composites Xij → Xi → Ob(V ) and Xij → Xj → Ob(V )
coincide;

(2) the maps (Xij)Z → (Xi)Z coincide with the inclusions Ui ∩ Uj → Ui, the
maps Xi → Ob(V ) induce the inclusions Ui → V .
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For any affine variety Y over F1 define

X(Y ) =
⋃
i

X
i
(Y )

(union in HomZ(YZ, V )) and let

aX =

{
(fi) ∈

∏
i

ai

∣∣∣∣fi|Xij = fj|Xij

}
.

Then the object X = (X,aX , eX) (where eX is the obvious evaluation) is
a variety over F1 and X ⊗F1 Z is canonically isomorphic to V .

5. Zeta Functions

Let X = (X,aX , eX) be a variety over F1. We make the following as-
sumption:

ASSUMPTION: There exists a polynomial N(x) ∈ Z[x] such that, for all
n ≥ 1, #X(F1n) = N(n+ 1).

Consider the following series:

Z(q, T ) = exp

(∑
r≥1

N(qr)
T r

r

)
.

Now take T = q−s to get a function of s and q. For every s ∈ R, the function
Z(q, q−s) is meromorphic and has a pole at q = 1 of order χ = N(1). We let
q go to 1 to get a zeta function over F1. We define

ζX(s) = lim
q→1

Z(q, q−s)(q − 1)χ.

Lemma 5.1. If N(x) =
d∑

k=0

akx
k then

ζX(s) =
d∏

k=1

(s− k)−ak .

Proof. We may assume that N(x) = xk. Then we have

Z(q, q−s) = exp

(∑
r≥1

qkr
q−rs

r

)
= exp(− log(1− qk−s)) =

1

1− qk−s
.

Now we have that

lim
q→1

q − 1

1− qk−s
=

1

s− k
.

�

For instance, if X = Gm/F1, we get #X(F1n) = n = N(n + 1) with
N(x) = x− 1. Therefore

ζX(s) =
s

s− 1
.
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6. Toric Varieties over F1

6.1. Toric varieties. Let d ≥ 1, N = Zd, and M = Hom(N,Z). Let NR =
N ⊗Z R and MR = M ⊗Z R. We then have the duality pairing

〈·, ·〉 : MR ×NR → R .

Definition 6.1. A cone is a subset σ ⊂ NR of the form

σ =
∑
i∈I

R+ni

where (ni)i∈I is a finite family in N .
We define the dual and the orthogonal of σ by

σ∗ =
{
v ∈MR

∣∣〈v, x〉 ≥ 0 for all x ∈ σ
}

and

σ⊥ =
{
v ∈MR

∣∣〈v, x〉 = 0 for all x ∈ σ
}

respectively.
A cone is strict if it does not contain any line.
A face is a subset τ ⊂ σ such that there is a v ∈ σ∗ with τ = σ ∩ v⊥.

Definition 6.2. A fan is a finite collection ∆ = {σ} of strict cones such that
(1) if σ ∈ ∆, any face of σ is in ∆, and
(2) if σ, σ′ ∈ ∆, then σ ∩ σ′ is a face of σ and σ′.

Definition 6.3. Given ∆, we define a variety P(∆) over Z as follows: for all
σ ∈ ∆, consider the monoid Sσ = M ∩ σ∗. Set

Uσ = Spec(Z[Sσ]).

If σ ⊂ τ , we have Uσ ⊂ Uτ . The variety P(∆) is obtained by glueing the affine
varieties Uσ, σ ∈ ∆, along the subvarieties Uσ∩τ .

We assume that ∆ is regular, i.e. any σ ∈ ∆ is spanned by a subset of a
basis of N . We shall define a variety X(∆) over F1 such that X(∆)⊗F1 Z =
P(∆).

6.2. The affine case. First, let us fix σ ∈ ∆. For any m ∈ Sσ, let χm : Uσ →
A1 be the function defined by m. When D is a finite abelian group, we define
Xσ(D) ⊂ Uσ(Z[D]) to be the set of points P such that for any m ∈ Sσ,
χm(P ) ∈ D q {0}.

Let

Cσ =
{
x ∈ Uσ(C)

∣∣|χm(x)| ≤ 1 for all m ∈ Sσ
}

and

C̊σ =
{
x ∈ Cσ

∣∣|χm(x)| < 1 for all m ∈ Sσ with 〈m,σ〉 6= 0
}
.

We defineaσ to be the ring of continuous functions f : Cσ → C such that f |C̊σ
is holomorphic . Finally, if P ∈ Xσ(D), f ∈ aσ and χ : D → C×, we define
eσ(P ) by the formula χ(eσ(P )(f)) = f(χ(P )) .

The following is a generalization of Proposition 3.9. and Proposition 3.11.

Proposition 6.4. If σ is regular, then Xσ = (Xσ,aσ, eσ) is an affine variety
over F1 such that Xσ ⊗F1 Z = Uσ.
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Proof. Suppose {n1, . . . , nd} is a basis for N and that σ = R+n1 + · · ·R+nd−r.
Let {m1, . . . ,md} be the dual basis of M . Then

Sσ = Nm1 + · · ·Nmd−r + Zmd−r+1 + · · ·Zmd = M ∩ σ∗ ,

and as Uσ(C) = Cd−r × (C×)r, we have

Cσ =
{
x ∈ Uσ(C)

∣∣|x1|, . . . , |xd−r| ≤ 1 and |xd−r+1| = · · · = |xr| = 1
}

and

C̊σ =
{
x ∈ Uσ(C)

∣∣|x1|, . . . , |xd−r| < 1 and |xd−r+1| = · · · = |xr| = 1
}
.

Furthermore

Xσ(D) = (D q {0})d−r ×Dr.

Let V be an affine variety over Z, and let ϕ : Xσ → G(V ) be a morphism of
affine gadgets. We must find a ϕZ : Uσ → V such that ϕ = G(ϕZ) ◦ i. This
is the same as a morphism from the algebra of functions on V to the algebra
of functions on Uσ. Let f ∈ Γ(V,OV ). Then f induces a function fC on the
complex variety VC, and we may pull back this function to get a function on
Xσ: gC = ϕ∗(fC) ∈ aσ. We must show that gC is algebraic over Z, i.e. that
it comes from a g ∈ O(Uσ). Restrict gC to (S1)d, and look at the Fourier
expansion

gC(exp(2πiθ1), . . . , exp(2πiθd)) =
∑
J∈Zd

cJ exp(2πi(J ·θ)) where J ·θ =
d∑

k=1

jkθk.

Since gC is holomorphic on Cσ, we must have cJ = 0 when jk < 0 for 1 ≤
k ≤ d − r. We want to show that gC is an integral polynomial in the first
d − r coordinates and an integral Laurent polynomial in the r remaining
coordinates, i.e.

gC ∈ Z[T1, . . . , Td−r, T
±1
d−r+1, . . . , T

±1
d ].

Let n > 1, and consider D = (Z/n)d. Then if

Pk = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
kth slot is 1

,

we get a point P = (P1, . . . , Pd) ∈ Dd ⊂ Xσ(D). For a = (ak) ∈ D, define
χa : D → C× by

χa(b) =
d∏

k=1

exp

(
2πi

akbk
n

)
.

Then, as ϕ commutes with evaluations, we get

χa(eσ(P )(gC)) = gC(χa(P )) = gC(exp(2πia1/n), . . . , (exp(2πiad/n))

= χa(f(ϕ(P ))) = χa(Q)
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where Q = f(ϕ(P )) ∈ f(V (Z[D])) ⊂ Z[D]. The Fourier coefficients of gC are
given by the formula

cJ =

∫
(S1)d

gC(exp(2πiθ1), . . . , exp(2πiθk)) exp(−2πi(J · θ))dθ1 · · · dθd

= lim
n→∞

n−d
∑
a

gC(exp(2πia1), . . . , exp(2πiak)) exp(−2πi(J · a)/n)

= lim
n→∞

n−d
∑
a

χa(Q) exp(−2πi(J · a)/n).

But as Q ∈ Z[D] we must have, for every n,

n−d
∑
a

χa(Q) exp(−2πi(J · a)/n) ∈ Z .

Therefore cJ ∈ Z, and cJ = 0 for almost all J , as desired. �

6.3. The general case. Let ∆ be a regular fan. For every affine variety Y
over F1 let

X
∆

(Y ) =
⋃
σ∈∆

Hom(Y,Xσ) .

Define
C∆ =

⋃
σ∈∆

Cσ ⊂ P(∆)(C) ,

and let a∆ be the algebra of continuous functions f : C∆ → C such that,
for all σ ∈ ∆, the restriction of f to C̊σ is holomorphic. Finally, if P ∈
Hom(Y,Xσ) ⊂ X

∆
(Y ) and f ∈ a∆, define e∆(P )(f) = P ∗(f) ∈ aY .

The following is a consequence of Proposition 4.4 and Proposition 6.4.

Theorem 6.5. The object X(∆) = (X
∆
,a∆, e∆) over F1 is a variety over F1

such that
X(∆)⊗F1 Z = P(∆) .

Remark 6.6. There exists N(x) ∈ Z[x] such that, for all n ≥ 1, #X∆(F1n) =
N(n+ 1).

7. Euclidean Lattices

Let Λ be a free Z-module of finite rank, and ‖ · ‖ an Hermitian norm on
Λ ⊗Z C. We view Λ = (Λ, ‖ · ‖) as a vector bundle on the complete curve
Spec(Z)q {∞}. The finite pointed set

H0(Spec(Z)q {∞},Λ) =
{
s ∈ Λ

∣∣v∞(s) = − log ‖s‖ ≥ 0
}

= Λ ∩B ,

where B =
{
v ∈ Λ⊗Z C

∣∣‖v‖ ≤ 1
}

, is viewed as a finite dimensional vector
space over F1.

We can define an affine variety over F1 as follows. We let

X(D) =

{
P =

∑
v∈Λ∩B

v ⊗ αv
∣∣∣∣αv ∈ D

}
⊂ Λ⊗Z Z[D] .
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If Λ0 ⊂ Λ is the lattice spanned by Λ ∩B we consider

C =
{
v ∈ Λ0 ⊗Z C

∣∣‖v‖ ≤ card(V ∩B)
}
,

and we define aX as the algebra of continuous functions f : C → C such that
f |C̊ is holomorphic. Finally, for each D ∈ Abf , P ∈ X(D), f ∈ aX , and
χ : D → C×, we define

χ(f(P )) = f

( ∑
v∈Λ∩B

χ(av)v

)
.

Proposition 7.1.
(1) The affine gadget X = (X,aX , eX) is an affine variety over F1 such that
X ⊗F1 Z = Spec(SymmZ(Λ∗0)).

(2) There is a polynomial N ∈ Z[x] such that, for all n ≥ 1, #X(F1n) =
N(2n+ 1).

This proposition raises the question whether there is a way to attach to Λ
a torified variety in the sense of [6].
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[8] C. Soulé, Les variétés sur le corps à un élément. Mosc. Math. J. 4, (2004) 217-244.
[9] R. Steinberg, A geometric approach to the representations of the full linear group

over a Galois field. Trans. Am. Math. Soc. 71, (1951) 274-282.
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